科学解释:真空不传热,地球是怎么接收到太阳的热量的?

1⃣️在地球上向空中射出一束激光是可见的,因为地球空气中的尘埃太多,这一束光是尘埃受到光照后的散射、但在太空的真空下就不能看到这一束光,那为什么能用光测绘恒星距离呢?原来是利用光幅射的原理,恒星物质的阻挡才接受到了来自远方的光源。如果在太空放电影,就见不到镜头和屏幕两者之间的光束,而屏幕上能显影是因为物体阻挡光束后得到的幅射。

2⃣️光的折射幅射是一样的道理,光的波长有长短,比如波长很短的X光其幅射和穿透力极强,X光难以穿透铅板就产生折射可进入人体、像太阳光为可见光波长就相对较长,它在太空的真空环境下也是如灯泡光芒四射的,旁观者遥看太空是漆黑的,这是因为太空无尘埃、又无阻挡物,产生不了折射,为何所有行星都发光,就是太阳光穿透真空后在星球表面产生了阻挡而幅射。幅射后的光能及热能大小又决定距离和物质的性质(太阳系八大行星受幅射的程度不同就因与太阳的距离而不同)。

3⃣️由此,光在太空中是直射的,看太空是漆黑的,是因为这之间是真空没有尘埃产生光的折射,但是真空环境中不能阻挡光以300000万公里/S飞行,你能在夜空见到卫星飞行就是卫星外表受到了光的折射,似一颗在漆黑夜空中闪亮的行星。

4⃣️知道了光幅射原理,从锅型的取暖器及太阳能水管可以看出热幅射与红外光波有关,从太阳光的光谱分析中看到,凡是红外线受到深色物体幅射后便会产生热能,人们也称红外光为暖光。

谢谢!

科学解释:真空不传热,地球是怎么接收到太阳的热量的?

温度到底是什么?

其实要了解地球是如何接收太阳热量的问题,我们就得先来看看了解一下:温度到底是什么?

关于这个问题,物理学上有严格的定义,不过,这里我们仅仅需要从微观的视角来看,我们都知道物质都是由原子构成,原子其实并不是整齐地排列在一起。实际上,它们是非常凌乱地到处乱跑。

那这和温度有什么关系呢?

科学家发现,温度的本质上就是微观粒子热运动的剧烈程度。具体是什么意思呢?

同样是到处乱跑,分子也有运动很剧烈和不怎么剧烈的差别。当分子整体运动的特别剧烈时,温度就很高。当分子整体运动的并不是很剧烈时,温度就相对降低。我们用分子的平均动能来描述:

分子的平均动能越大,温度越高;

分子的平均动能越小,温度越低。

太空不是真空,也不是绝对零度

通过上文的讲述,我们了解了温度的本质。但这里要多补充一点,那就是温度要体现出来,需要足够多的分子数,这是建立在大规模统计之上的结果,而不是说几个分子就能够成立的。

平时,我们常说宇宙是真空的,或者宇宙是绝对零度的。实际上这两个说法是错误的。具体是咋回事呢?

这里我们来简单的科普一下,首先,太空确实很空旷,这点确实没有错。我们可以通过宇宙学理论来计算宇宙的平均密度,这个密度的水平大概就是一立方米不到一个氢原子的水平。在地球上的任意一个实验室中都无法做到这个程度的“真空”,但毕竟还是有“原子”,因此,太空并不是真空的。不过,由于微观粒子数量实在太少,因此,太空并不能够很好地显示出温度来。

很多人都以为宇航员如果暴露在太空中会被冻死,通过这段讲述,你应该就会知道,宇航员其实并能够感受到太空的温度,更谈不上冻死,实际上,人如果暴露在太空中,要么憋死,要么体液沸腾而死。

除此之外,太空也不是绝对零度,具体来说,这个温度应该是比绝对零度高2.7度,记为2.7K。这个温度来自于宇宙大爆炸残留下来的“余温”,也被我们称为宇宙微波背景辐射,目前我们可以通过探测器来探测到它。

地球如何接收太阳的热量

了解了上述的情况,我们再来看看地球是如何接收太阳的热量。一般来说,热量的传递分为三种方式分别是:

  • 热传导
  • 热辐射
  • 热对流

地球接收太阳的热量属于热辐射

具体来说是这样的,太阳的内核在发生核聚变反应,4个氢原子核通过核聚变反应生成氦-4原子核,同时损失一部分质量,这部分质量以能量形式,或者我们说是以电磁波的形式向外传播。

在这个过程中,太阳每秒要损失420万吨的质量,这部分质量都以能量的形式传递出去的,我们可以通过质能等价公式E=mc^2来计算这个能量的大小,是一个十分巨大的数字。

为了帮你理解这个数量级差异,就拿钱来做比喻。这相当于太阳每秒钟要向太空扔掉70亿,而被地球接收到的仅仅只有3万左右,而人类真的利用上的只不过3元而已。

这里补充一点,太阳是一个等离子体,因此,产生的光子要跑到太阳表面大概需要14万年的时间。从太阳表面达到地球,整个过程大概需要8分20秒的时间。

太阳产生的光子在经过太阳和地球中间的这段路程时,就像上述所说的,因为太空十分空旷,所以并没有受到什么阻挡,可以直接抵达地球。

由于地球是一个密度巨大的物体,分子数远远高于太空,这些构成地球的分子会吸收来自于太阳的辐射,将其转化为分子的热运动,当分子的热运动变得剧烈,地球的温度也就开始升高了。所以,地球能够接收太阳传递过来的热量,最根本的原因就是地球的密度足够大,构成地球的分子数可以直接把太阳辐射过来的光子接收到,并转化为热运动。

科学解释:真空不传热,地球是怎么接收到太阳的热量的?

造成“宇宙真空间”的罪魁祸首是各大星系、各大星球的巨大的黑洞磁场引力,连光都逃不脱它的魔掌,尘埃、空气就更不用说了。所以,各大星系、大星球之间的中间地带都是真空。但是有一点必须要知道,那就是:任何物质都被宇宙微粒子包围着(好像宇宙是大海大洋,任何物质都是大海大洋里的鱼儿一样,我们人类便是其中的小鱼仔)。真空里也同样被宇宙微粒子层层包围,建构成:整个宇宙都是微粒子的宇宙,宇宙微粒子把我们人类、星球、星系等等连成了一片(太奇妙了!)。有人做过实验微粒子是导热的吗?微粒子不导热就是不导电,但是它导光,微粒子导光的速度是每秒三十万公里(我们平时所说的光速)。在这里,太阳的光照射到地球上,大家都知道,地球是有大气层的,并且还有上、中、下三层重要的气体,这些气体是物质,有些我们看不到,但有些我们可以看得到,它们在太阳光的照射下,发光、发热,在地球上空流动滚转,像一面大型的锅锅凹镜一样、像数也数不清的微型激光一样和地球表面的海洋、高山、沙漠相聚反射,导致地球产生了热量。

科学解释:真空不传热,地球是怎么接收到太阳的热量的?

这个问题归根结地是题主把“热”这个概念狭义化了!

什么是热量?

大多数对于热量这个概念的第一反应就是温度,殊不知温度只是定性反应分子热运动剧烈程度的宏观表现,而热量则是表示能量转化或传递的量度。

其实所谓热量说到底它仍是能量,只不过它的产生只来自于物体粒子的运动,我们知道一个物体虽然宏观看上去静止不动,但是从微观角度来说构成这个物体的所有粒子都是运动,并且彼此碰撞和反弹,所以这些粒子运动和碰撞的越快,那物体产生的热量就越多,所表现出的温度也就越高。

热量传递的三种方式

既然明白了热量的概念,我们再来想想热量的传递。

生活中我们会感受到,温度高的问题和温度低的问题放在一起,一段时间后两个物体会差不多等温,这就是热量传递的第一种方式-热传导。再来想想大家都用电脑,经常会谈到散热这个话题,那么无论是用风扇还是水冷,都是为了将器件产生的热量排出去,这就是热量传递的第二种方式-热对流。

那么你会想太阳对地球的热量传递不是这两种方式呀,因此太阳与地球之间热量传递的方式必然是另一种形式。

热辐射

我们前面说了热量的本质仍是一种能量,那么热量的传递也可以是能量的变换。

我们知道太阳无时无刻都在发生核聚变,在这个过程中会释放各种不同波长的电磁波,包括γ射线、X射线、紫外线、可见光、红外线等等。这些电磁波到达地球后会被地球吸收,从而将光能转变为了物体的内能,表现出物体的温度上升了。这就是热量传递的第三种方式-热辐射。

其实这种现象不仅仅是太阳,我们浴室中所用到的浴霸也差不多是这个原理。当然太阳也会发出一些高能粒子,高能粒子可以通过热传导加热地球,只是这部分作用占比非常非常小。

评论留下你的看法!

科学解释:真空不传热,地球是怎么接收到太阳的热量的?

绝对的真空是不传热的,但宇宙中的真空可不是绝对的真空。因为宇宙中除了恒星、行星、卫星、小行星之外,还有星云、星际介质、及尘埃等。虽然它们很稀薄,但普遍存在于宇宙之中,太阳的光辐射就是通过这些小小颗粒传递到地球的。

因为这些介质很稀薄,所以太阳光辐射的热量到达地球是很微弱的。那么为什么我们人类却感觉很温暖呢?这就要感谢地球的大气层了!它就像一层厚厚的盔甲,保护着地球上的万物生灵,不受外来天体的撞击而带来的灭顶之灾。同时,它又把太阳微弱的热辐射保存起来,就像农村的温室大棚一样,让热量传递到温室里面,一层塑料薄膜把温度隔离在温室内。让温度正好适合所有生物生存的标准。让地球成为了这个宇宙奇迹。

这就是真空不传导热,而地球却温暖如春,生机勃勃,气象万千。

科学解释:真空不传热,地球是怎么接收到太阳的热量的?

真空不传热,地球是怎么接收到太阳的热量的?

在我们的印象中,热量的传输要通过一定的媒介作为中间传导物质,然后才能从一个热量高的物体传传输到一个温度较低的物体之上,无论是利用火焰来加热,还是用体温计测量体温,都是这个道理。而且我们知道,真空的环境中就不存在这个热量传输的媒介,温度的传输就失去了物质载体,保温瓶之所以保温,就是利用了真空绝热的这个原理。那么,从太阳释放出的热量,如何通过茫茫真空地带到达地球呢?

温度和热量的关系

在搞清楚地球为何能够接受到太阳释放的热量之前,我们先来了解一下温度、热量以及它们之间的联系。

1、温度是一个人为创造出来的物理量,它是用来衡量组成物体微观粒子平均动能的一个物理标量。我们通过温度为具体数值,可以直接反映出物体的冷热程度,而通过温度的变化,则能直观得看出物体平均动能的相互变化情况。从微观粒子的运动层面看,无论是分子、原子,还是组成元素原子中的质子、中子,每时每刻地都在做着无规则的振动、碰撞和摩擦,温度如果越高,物体内的微观粒子做无规则运动的速度就会越快,从而粒子的平均动能也就越大,我们称之为这个物体所具有的内能就越多。

2、热量是微观粒子具有内能的直接体现,是物体在热传递过程中内能变化的量度。它是一个相对的概念,是物体本身所拥有的一个固有属性,不代表着温度低它就没有热量。热量是与热传递紧密相联的,一个物体吸收或放出热量,实质上就是是物体具有内能的变化数量,体现在温度数值的变化上。

3、温度与热量既有联系,也有区别。温度与热量,都是直接与物体所具有的内能直接相关。温度是反映热量转移的结果,热量转移是温度变化的直接原因。由于物体所具有的内能的来源包括两个部分,其一是对物体做功,其二是热传递,因此,物体的温度没有发生变化,或者物体没有吸引或释放热量,都不能代表物体内能没有变化,通过做功的方式同样可以增加物体的内能,却不改变物体的热传递,物体没有与外界进行热交换,温度也不会发生变化。

宇宙中热量传递的方式

热量从一个系统传递到另一个系统,或者从系统中的一个部分传递到另外一个部分,这种物理现象我们称之为热量传递。我们在日常生活中常见的温度变化,主要是热量的传导过程,必须依赖相应的物体作为媒介才能完成。其实,在宇宙空间中,总共有三种主要的热量传递方式,热传导只是其中一种。这三种方式为:

  • 热传导。组成物体中大量的微观粒子通过热运动产生的相互撞击,使内能从物体的高温部分传导到低温部分,或者由高温物体传递给低温物体的过程,我们称之为热传导。热传导必须通过媒介物质作为中间“热导体”才能实现,最明显的热传导就是通过固体进行传导,比如直接加热一个勺子,加热的部分很快变热,隔一段时间后热量就会传递到勺子的另一端。

  • 热对流。热量通过具有流动性质的媒介物质,从一个物体传递到另一个物体或者从物体的一个部分传递到另外部分的过程。这个具有流动性质的媒介,与刚才提到的热传导中的固体媒介不同,这时则是通过液体和气体作为媒介,通过媒介物质的循环流动,使得热量得以传输,最终使温度趋于均匀。比如我们烧开水的过程,实质上就是热传导和热对流兼有的一个过程。而我们在日常生活中经常遇到的大气对流,热空气上升和冷空气下降,实际上也是一个热对流的过程。

  • 热辐射。与热传导和热对流不同,热辐射不通过特定的媒介进行热量传输。宇宙间的物体,其组成的微观粒子都具有不同速率的运动方式,从而都具有比绝对温度要高的温度(绝对温度时微观粒子不表现出任何的运动,其内能为零,因此只能理论上存在这样的温度),那么这个物体就会具有以电磁波形式向外释放热量的能力。温度越高,电磁波能量就越强,波长就越短。反之一般的电磁辐射,由于物体本身温度较低,其辐射的波长就越长,能量就越低。

地球能够接受到太阳辐射的原因

在宇宙空间中,除了恒星、行星、卫星、彗星之外,其余空间的物质组成密度极其微小,很多都是呈现“虚空”的状态。据测算,宇宙空间中的物质平均密度仅为10^(-29)克/立方厘米的级别,也就是仅有几个质子,它们之间的间隔相对来说非常远,相互碰撞、摩擦的几率很小,这也是为什么星际空间温度非常低的原因。与此同时,这种低密度的物质分布,也使得微观粒子传输热量的可能性微乎其微,因此,对于热传导和热对流这两种热量传输方式,就失去了其必须具备的媒介。

那么,只有一种方式可以进行热量的传输了,那就是热辐射。因为热辐射的方式是以电磁波的方式作为能量的载体,不需要特定的媒介物质,在真空中都可以有效地传播。来自太阳的核聚变,使得向外辐射出的电磁波具备了很强的内能,继而转换为电磁波传播过程中的辐射能,在物体接收到这些电磁辐射能量时,又会进行能量的转换,从辐射能转换为内能,从而表现出能量的吸收和温度的升高。

从地球的视角来看,地球表面所承载的各种物体,包括地球的大气层,都能够接收到来自太阳发出的电磁辐射,从而转换为这些物质的内能,热量实现了从太阳到地球的传输。之所以地球上的温度能够保持稳定,与大气层的存在密切相关,一方向能够吸收太阳的短波辐射,使得大气层自身的温度得以保持,而且还可以向地面继续进行热量传输。

另一方面,也可以吸收来自地球发出的长波辐射,使得热量在大气层外围、大气层和地球三者之间形成了一种稳定的输入输出状态,相当于给地球加了一层保护措施,确保地球的热量积聚和散失处于一种动态的平衡状态,才不至于过热或者过冷。

由于电磁波与光的特性相同,同样遵守着波粒二象性,在携带着能量传播的过程中,遇到星际空间中存在的微量气体、星际尘埃等物质,虽然这些物质稀薄,但一样会使电磁波发生投射、反射或者折射现象,这也是为什么来自恒星释放出的热量,在传播很远的距离后同样会发生衰减的原因所在。

总结一下

太阳释放出来的光和热,是整个太阳系包括地球稳定运行的能量来源,我们地球上的生命之所以欣欣向荣,来自于地球能够有效地吸收和保持来自太阳的辐射能量。而地球之所以能够接收到太阳的辐射,主要原因在于热量可以通过热辐射的方式进行传导,这也是大尺度宇宙空间中热量传输占比最大的一种方式。

内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请与我们联系,我们将及时删除。

相关推荐